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The reference level of the separated constituents and the crossing of the potential curves for the 
ionic and covalent state are discussed with respect to the choice of orbital occupation numbers and 
Fermi-Dirac statistics. Calculations show a distinct crossing of potentials curves, when using a constraint 
of integer occupation numbers. No crossing is predicted, when fractional occuption numbers are used, 
which are adjusted according to Fermi-Dirac statistics. 
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1. In~oduefion 

In recent years the SCF-Xe-SW-method [1] has been applied to a great 
variety of chemically interesting systems, mostly in connection with the interpreta- 
tion of photo electron spectra. But it has also been used for calculations of molecul- 
ar total energies. In particular, the problem of the dissociation limit is of consider- 
able interest, because potential surfaces are valuable tools for describing chemical 
binding and because the limiting behaviour is different for the HF and SW method. 

For homonuclear diatomic molecules the correct dissociation properties 
within the SW-method have been exemplified for some typical cases [2], including 
detailed discussions on the effect of the exchange parameters [3] as well as non- 
muffin-tin terms [4]. For heteroatomic molecules, however, the problem is more 
difficult to understand, since the Xc~-model of exchange obeys rigorously Fermi- 
Dirac statistics [-5, 6]. Therefore the problem of the reference level of the separated 
constituents has to be discussed rather carefully. 

In the present paper the well-known case of the dissociation of the NaC1 
system is investigated with respect to this particular aspect of the SW-method. 
In the neighbourhood of the equilibrium spacing the NaC1 molecule is pre- 
dominantly ionic. If one tries to extend this ionic description to infinite inter- 
nuclear distance, the molecule would dissociate to Na + and C1- ions. The sum 
of the total energies of the isolated ions, however, is higher than that of the neutral 
atoms. Within the adiabatic approximation to the motion of the nuclei [-7] one 
has to expect crossing between the potential curves for the ionic and covalent 
state. The change from the ionic model at small distances to the atomic model at 
large distances makes alkali halides interesting systems for a discussion of the 
dissociation limit. 
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2. Statistical Total Energy of the Separated Constituents 

In the statistical X~-method it is possible to use non-integer orbital occupation 
numbers [5]. Defining 0 < x < 1 as the ionicity and Eel(x) as the statistical total 
energy of a Chlorine ion C1 -~ with the configuration l s 2 2s 2 2p 6 3s 2 3p 5+~ and 
c o n c o m i t a n t l y  ENa ( - X )  to be the statistical total energy of the corresponding 
Sodium ion Na ~ with configuration ls 2 2s 2 2p 6 3s 1-~, the statistical total energy 
of the separated constituents (i.e. for the internuclear distance R = ~ )  E ( ~ ,  x) is 
the sum of these two energies 

E(oo,  x) = Ec l (x  ) -}- ENa ( -- X). (1) 

0E (~ ,  x) 
The minimum of E(o% x) with respect to x, Ox - O, implies that 

OEc,(X) _ OEN. ( -  x) (2) 
~x 0x 

Since in the X~-model the derivative of the total energy with respect to the orbital 

0Ec,(x) is the 3p orbital occupation number is the corresponding orbital energy, 3x 

~?ENa(-- X) the 3s orbital energy of the energy of a Chlorine ion of ionicity x and 0x 
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Fig. i. Variation of ~b(oo, x) = E(oo, x) - E(oo, 0) with respect to x, E(oo, x) being the total energy of 
separated ions of ionictity x [Eq. (1)] 
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corresponding Sodium ion. The minimum of E ( ~ ,  x) refers exactly to that ionicity, 
where a Chlorine and Sodium ion have equal top valence orbital energies (Fermi- 
Dirac statistics) [5]. 

Figure 1 shows the variation of the quantity 4~(~, x) = E (~ ,  x ) -  E(oe, 0) 
with respect to x, where E ( ~ ,  0) is the sum of the statistical total energies of the 
free neutral atoms Sodium and Chlorine. In Fig. 2 the corresponding orbital 
energies are plotted versus the ionicity. Implying Fermi-Dirac statistics to the 
limit of the separated constituents, an ionicity Xo of 0.405, i.e. Na +°'4°5 and 
C1 -°'4°5, and an partially ionic reference value of ~b(~,xo)=-0.086Ry 
( -  1.1696 eV) has to be encountered. 

3. The Ionic and Covalent State of Sodium Chloride 

Three different sets of orbital occupation numbers have been investigated: 
namely Kl8a 23rc49a°[, the ionic state; KI8o -137~9a1[, the covalent state and the 
transition state Kl8a 1.53n49ao.s[, with K being [ laZ 2a2 3az 4a 2 l ~4 5a2 6az 2n47a2[. 

In all cases atomic exchange parameters [-8] (~v~) have been used within the 
atomic spheres and a mean value of these (~ = 0.7268) for all other regions of 
space. 
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Fig. 2. Variation of the top valence orbital energies for Sodium, Ox , and for Chlorine, c3-~---' 

with respect to the ionicity x 
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According to Slater's transition state concept [5], the difference of the statistical 
total energies for the ionic state, ES(R), and the covalent state, ECS(R), at a given 
internuclear separation R can be approximated very efficiently by the transition 

energy 5(R), g(e) = EIS(R) - ECS(R) (3) 

g(R) = es,(R) - e 9 a ( R ) ,  

where es,(R) and e9,(R) are the 80-- and 90--molecular orbital energies at a particular 
internuclear distance R for the state K I8 a 1" 5 3rc49 ao. s I. In order to illustrate this 
approximation, the corresponding quantities at R =  6 a.u. are cited, namely 
E~S(R) - ECS(R) = - 0.369 Ry and g(R) = - 0.365 Ry. 

In the atomic Xe calculation the statistical total energy for the free Chlorine 
ion, Eel(l), can only be extrapolated, because the 3p orbital energy would be 
positive for x--  1 (Fig. 2). Therefore similar difficulties have to be expected for 
the potential curve of the ionic state for medium and large values of R due to the 
80- and 3re orbital energies. In order to avoid such difficulties, ElS(R) is computed 
directly only for R < 7, while for R > 7 ECS(R) is evaluated. The respective quan- 
tities are obtained by means of the transition state concept, according to (3). 

4. Computational Aspects 

Atomic sphere radii Rp are chosen to be half of the internuclear distance. 
Unfortunately, because of numerical difficulties, it is not possible to enlarge the 
Chlorine sphere radius arbitrarily. However, up to a value of R = 9, sphere radii 
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Fig. 3. Comparison of the quantities [ZN, -- Q~(R)] and [ Z N a  - -  Q~°I(R)] for Sodium, plotted versus 
the internuclear distance R(a.u,) 
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Fig. 4. Comparison of the quantities [Zcl - Q~tI(R)] and [Zcl - QCMI°I(R)] for Chlorine, plotted versus 
the internuclear distance R(a.u.) 

can be chosen to be R/2, whereas for all R > 9, a constant value of 4.5 is used for 
the Chlorine sphere and R/2 for the Sodium sphere radius. 

In order to discuss this numerical deficiency, the quantities [Zp- Q~(R)], Zp 
being the atomic number and Q~t(R) being the radial integral of the spherical 
symmetric charge density in the range [0, R/2] for. the atomic system p, are 
compared in Figs. 3 and 4 with the corresponding molecular quantities 
[Zp- Q~°I(R)], with Q~°I(R) being the radial integral of the spherical symmetrical 
charge density in sphere p in the range [0, Rp]. Figure 3 shows the comparison for 
the Sodium constituent, for which no restrictions to the sphere radius are necessary. 
This figure indicates that for large values of R corresponding curves eventually 
coincide and that for medium large R for both, the covalent state and the transition 
state, the "ionicity" of the Sodium sphere [ZNa Mol - -  QNa (R)] will be less positive as 
compared to the respective atomic value. Figure 4 shows quite drastically the 
effect of the restriction to the Chlorine sphere radius. For the covalent, as well as 
for the transition state, the proper decay of the quantity [Zc~ - Q~c?l(R)] for R > 9 
is disrupted. The comparison with the corresponding atomic cases shows that the 
"ionicity" of the Sodium and Chlorine sphere for these values of R will be essentially 
the same as in the atomic systems. Since in the case of the covalent state this 
deficiency is quite small and since the main goal is to calculate the statistical total 
energy, the results will be essentially unaffected by this restriction to the Chlorine 
sphere radius. For example, for R = 10.0 a.u. the statistical total energy is changed 
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Fig. 5. Variation of the 8a-orbital energy, ~s~(R, I + x), corresponding to states K[8a 1 +x37r49al-x], 
with respect to its occupation number (1 + x) for a selection of medium and large internuclear distances 

R(a.u.) 

only within the self-consistent threshold, increasing the Chlorine sphere radius 
from 4.5 to 4.8. 

For the transition state this restriction is more critical. Similarly to the atomic 
case (Fig. 2) for the 3p orbital energy the value of the 8a- and 3re-orbital energy 
will be effectively changed by the "ionicity" of the Chlorine sphere. In Fig. 5 the 
energy of the 8a-orbital, ~s~(R, 1 + x), corresponding to states Kl8a 1 +x3zc49al-xl, 
is plotted versus its occupation number (1 + x) for medium and large values of R. 
Utilizing the essentially linear dependence of the 8o--orbital energy with respect 
to its occupation number, one can effectively correct the value at x = 0.5 by means 
of atomic quantities [Zc~- Q~tI(R)] and the "ionicity" of the Chlorine sphere in 
the molecule. The slope K(R) of the 8a-orbital as a function of its occupation 
number (1 + x), is given by 

~8~(R, 1 + x)  - ~8~(R, 1 + Xo) 
K(R) = (4) 

X --  X 0 

The correction for the "ionicity" of the Cl-sphere can be set up as: 

A Q(R) = [Q~tl(R ) - QcM~°'(R)] (5) 
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where A Q(R) is the approximate for the missing charge arising from the 3n- and 
8a-orbital, when restricting the Chlorine sphere radius to 4.5 for R > 9. 

Since in the R range, where corrections are necessary, the 3n- and 8a-orbital 
energies are degenerated and have the same slope with respect to a variation of the 
corresponding occupation number, one has to correct both orbital energies 
simultaneously in order not to destroy this degeneracy. For this reason the transi- 
tion energy is reformulated in the following manner, 

~(R)  = ½[/~8a(R) -F/33n(R)-I  - -  ~39a(R ) 

= ½[e%(R) + ~°,~(R) + K(R) A Q(R)] - ~9a(R) (6) 

= e°,(R) + ½K(R) A Q(R) - 89a(R ) -- es , (R)-  eg,(R), 

where ~%(R) is the 8a-orbital energy for x = 0.5 as calculated with the restriction 
to the Chlorine sphere radius, es~(R ) is the corrected value. 

5. Results 

In Fig. 6 the values of e%(R), es,(R), and e9,r(R ) a r e  plotted together with the 
transition energy g(R) and the uncorrected transition energy f i  (R) = e°,(R) - e9~(R ) 
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Fig. 7. Potential curves for the covalent state ~CS(R), the ionic state ~b~S(R), and the transition state 
~bTS(R). ~CS(R) + g(R) is the corrected potential curve for the ionic state, when using the transition energy 
~(R) for R > 9, whereas ~CS(R)+ g°(R) is the uncorrected potential curve. The reference level for the 

separated partial ions of ionicity x = 0.405 is denoted by q~(oo, 0.405) 

versus the internuclear separation. The crossing of the two orbital energy curves 
~s~(R) and ~9~(R), i.e. the zero location of the function g(R) refers exactly to that 
value of R, where the covalent and the ionic state will have equal statistical total 
energies. In Fig. 7 the potential curves for the covalent and the ionic state with 
reference to the statistical total energy E(oo, 0) of the free neutral atoms, @IS(R) and 
~CS(R), and the classical Coulomb potential - 2/R + eb(oo, 1) are plotted versus R. 
In the same figure the potential curve ~TS(R) for the transition state 
Ki8o_1. s 3~49(ro. 51 is shown with reference to the limit of the free neutral atoms. 
The attractive branch of this potential curve is almost exactly of the form 

- 2 /Rx  2 + ~(oo, x) with x being 0.5, indicating a dissociation of partial ions with 
ionicity 0.5. 

Calculated results for the ionic state predict an equilibrium separation R0 
of 5.6 a.u. and a dissociation energy D e with respect to the free neutral atoms of 
4.12 eV. R o is about 18% larger than the experimental value of 4.74 a.u. [7, 9], the 
calculated dissociation energy differs only by 3.5 % from the experimental value 
(4.27 eV) [7, 9]. The crossing of the potential curves for the covalent and the ionic 
state is about R l=21.6a .u . ,  whereas the classical Coulomb potential, 
- 2/R + eb(oo, 1), predicts crossing at 20.7 a.u. The calculated crossing point and 
dissociation energy De are therefore quite satisfactory. 
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6. Discussion 

The potential curve for the covalent state predicts no minimum at all, and is 
for all values of R > 12 a straight horizontal line.The calculated dissociation energy 
and especially the equilibrium separation for the ionic state suffer to some extent 
from the muffin tin approximation, since for R < 6 a considerable amount  of 
charge is located in the region of the flat portion of the muffin tin potential. But at 
least, as compared with similar calculations for covalent molecules [2,3] the 
effect is much less drastical. 

As one can see from Fig. 7, a self-consistent approach does not automatically 
provide the minimum of the statistical total energy with respect to the Fermi- 
Dirac constraint. Just as in the case of transition metal atoms [10], one has to vary 
the occupation numbers of partially filled orbitals in separate calculations in order 
to get the most favourable state according to Fermi-Dirac statistics. For  this 
state the top valence orbitals will be degenerate. In Fig. 8 the value of x for which 
e8,(R, I d - x ) = 8 9 a ( R ,  1 - x ) ,  is plotted versus the internuclear separation R. 
This function x = x(R) is 1 at about R = 8, has the value 0.5 at R 1, the internuclear 
separation of the crossing, and approaches the Fermi-Dirac value 0A05 from 
above. In other words for all values of R < 8 the 9a-orbital is unoccupied and 
therefore the NaCI molecule will be ionic. For  all values ofR < 8 the NaC1 molecule 
will be a closed shell system. 

Constraining results to Fermi-Dirac statistics, one does not get free neutral 
atoms, but partial ions. The dissociation energy with respect to the Fermi-Dirac 
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Fig. 8. The value of x(R), for which the 8tr-orbital energy es~(R, l + x) and the 9tr-orbital energy 
eg,(R , 1 - x )  are degenerate. (1 + x) being the corresponding occupation number, x(R) is plotted as a 
function of the internuclear distance R (a.u.). Rz denotes the value of R for which crossing of the potential 

curves for the ionic and covalent state occurs 
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limit, ~ ( ~ ,  0.405), would be rather poor,  namely  2.95 eV, which is only about  
69 % of the experimental value. Using the x-values in Fig. 8 to compute  a ground 
state with respect to Fermi-Dirac  statistics, one gets a smooth  potential  curve, 
showing no crossing at all, leading from the pure ionic state to separated partial 
ions of  ionicity 0.405. 

Restricting the characterizat ion of  states of  molecules to sets of  integer occupa-  
t ion numbers,  the adiabatic dissociation process of  the NaC1 system yields free 
a toms as the most  favourable end channel products.  Calculations with integer 
occupat ion numbers  show a distinct crossing of  the potential  curves for the 
covalent and the ionic state; the crossing itself being basically an artifact of the 
adiabatic mot ion  of  nuclei. 
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